
Abstract—This paper evaluates asymmetric cluster chip

multiprocessor (ACCMP) architectures as a mechanism to

achieve the highest performance for a given power budget.

ACCMPs execute serial phases of multithreaded programs on

large high-performance cores whereas parallel phases are

executed on a mix of large and many small simple cores.

Theoretical analysis reveals a performance upper bound for

symmetric multiprocessors, which is surpassed by asymmetric

configurations at certain power ranges. Our emulations show that

asymmetric multiprocessors can reduce power consumption by

more than two thirds with similar performance compared to

symmetric multiprocessors.

Index Terms—ACCMP, Chip Multiprocessors, Power Efficiency.

I. INTRODUCTION

Achieving high performance within a given power envelope

is a major concern for microprocessor architects. In the past,

the constant decrease in feature sizes has enabled to increase

uniprocessor performance by packing more transistors in the

same die area. Nowadays, due to the complexity of current

state of the art microprocessors, a large increase in power and

area results in only small performance improvements.

Empirical evidence suggests that the performance of

uniprocessors is proportional to the square root of their area

 [12], [5]. These trends favor the use of Chip Multi Processors

(CMP) [8].

Software applications contain serial phases as well as

parallel phases. The lowest execution time for the serial phases

is achieved by the highest performance uniprocessor available,

since the serial phases can be executed on one processor only.

On the other hand, parallel phases can be executed on

numerous processors in parallel. Therefore, the lowest

execution time for the parallel phases is achieved by executing

them on many simple processors that consume less energy per

instruction (EPI) [7]. We claim that a choice of symmetric

cores is suboptimal due to the contradicting requirements of

the serial and parallel phases within the same application.

We propose placing clusters of different cores on a single

die. All of the cores within the Asymmetric Cluster Chip

1 The work has been performed under the Project HPC-EUROPA (RII3-

CT-2003-506079), with the support of the European Community - Research

Infrastructure Action under the FP6 “Structuring the European Research

Area” Programme. This work was also supported by a grant from Intel

Corporation. We acknowledge the European Center for Parallelism of

Barcelona (CEPBA) for supplying the computing resources for this research.

 Manuscript received: 27 Apr. 2005. Manuscript accepted: 14 July 2005.

Final manuscript received: 22 July 2005.

Multi-Processor (ACCMP) share the same instruction set

architecture and memory address space in order to let threads

migrate from core to core. The larger and faster cores will

execute single-threaded programs and the serial phases of

multithreaded programs for high EPI, whereas the smaller and

slower cores will execute the parallel phases for lower EPI. In

the general case, ACCMPs will include clusters of different

cores, since numerous multithreaded applications with varying

parallelism execute in parallel. An example of an ACCMP

with three clusters is shown in Fig. 1.

7

11

15

19

8

12

16

20

9

13

17

21

10

14

18

22

43

65

CPU1

CPU2

Fig. 1. An ACCMP floorplan with 22 general-purpose cores. On the left is a

cluster of large high performance cores that consume high EPI. On the right

are two clusters of smaller cores that consume less EPI.

Placing heterogeneous cores on a single die has been

proposed in recent research. Kumar et al. [9] have shown how

a heterogeneous multiprocessor could achieve similar

performance to a homogeneous multiprocessor for less power

and area. Grochowski et al. [2], [7] have proposed and

demonstrated an asymmetric multiprocessor by employing

voltage and frequency scaling on a symmetric multiprocessor.

Menasce et al. [10] have shown the analytic benefit of

heterogeneous systems using queuing models. Moncrieff et al.

 [11] have shown that heterogeneous multiprocessors perform

better when parallelism varies during execution.

Our contributions to previous work are as follows. We

propose a simple theoretical model for the performance of

symmetric chip multiprocessors. We then find an upper bound

for the performance per unit power (power efficiency) of such

multiprocessors. By comparing this upper bound to the power

efficiency of asymmetric chip multiprocessors we conclude

that asymmetric structures can achieve higher power efficiency

than any symmetric chip multiprocessor. Finally, we validate

our findings by experimental emulation of ACCMP structures.

II. ANALYSIS

A. Symmetric Chip Multiprocessors (SCMP)

Software applications have two types of phases, serial

phases and parallel phases. The serial phases can be executed

Performance, Power Efficiency and Scalability

of Asymmetric Cluster Chip Multiprocessors
1

Tomer Y. Morad† Uri C. Weiser‡ Avinoam Kolodny† Mateo Valero* Eduard Ayguadé*

†Department of Electrical Engineering

Technion, Haifa, Israel

{tomerm@tx , kolodny@ee}.technion.ac.il

‡Intel Corporation

Petach Tikva, Israel

uri.weiser@intel.com

*Departament d’Arquitectura de Computadors

Universitat Politècnica de Catalunya, Barcelona, Spain

{mateo, eduard}@ac.upc.es

IEEE Computer Architecture Letters Vol. 5, 2006

Posted to IEEE & CSDL on 1/30/2006
DOI 10.1109/L-CA.2006.6 1556-6056/05/$20.00 © 2005 Published by the IEEE Computer Society

only on a single processor whereas the parallel phases can be

executed on more than one processor. The variable λ denotes

the fraction of dynamic instructions that reside in the parallel

phases out of the total dynamic instructions.

For the purpose of mathematical analysis, we evaluate

multithreaded applications whose parallel phases can be

executed by up to the number of available hardware

processors, denoted by n. We assume that the performance of

a uniprocessor is a function of its area [12], [5]. Therefore, a

processor with area size a will have performance of Perf(a),

measured in instructions per second. We assume constant

cycles per instruction per processor throughout the workload.

The number of dynamic instructions in the parallel phases

of a program with M total dynamic instructions is λM. When

interactions between cores are neglected, Amdahl’s law for

symmetric parallel processors [1] may be written as following:

()
() ()

1 1
T T T .

Perf Perf
SCMP serial parallel

M
a n a

λ λ⎛ ⎞−
= + = + ⋅⎜ ⎟⎜ ⎟

⎝ ⎠

 (1)

The performance of an SCMP can thus be expressed as

()
()

SCMP

1
Perf Perf .

T 1SCMP

M
a

n
λ λ

= =

+ −

 (2)

We estimate Perf(a) for a uniprocessor of size a by

incorporating Pollack’s rule [12], [5] which states that

performance grows with the square root of area, that is

()Perf ,a aη= (3)

where η is a constant. For simplicity, we assume that total

chip power is proportional to the area of the die [12],

.P naγ= (4)

SCMP performance (2) can also be expressed as a function

of total chip power and area of a single core by using (3)-(4),

() ()
()

SCMP

1
Perf , Perf .

1

P a a
a

P

γ
λ λ

=
⎛ ⎞

+ −⎜ ⎟
⎝ ⎠

 (5)

B. Performance Upper Bound of Symmetric CMP

For a given power budget, the highest performance

(()SCMP
Perf , / 0P a a∂ ∂ =) of SCMPs is achieved when

, .
1

opt opt

opt

P
n a

n

λ

λ γ
= =

−

 (6)

The above results imply that maximum performance for

symmetric multiprocessors is achieved when the execution

time of the parallel and serial phases are equal. The maximum

performance as a function of total SCMP power is thus:

() ()()
()SCMP,max

1
Perf Perf .

2 1
opt

P a P
λ

=

−

 (7)

C. Asymmetric Cluster Chip Multi-Processors (ACCMP)

We focus on a special case of ACCMP that contains one

large core of area βa and n-1 small cores of area a, where β>1.

We assume that the serial phases of programs are executed on

the large core, whereas the parallel phases are executed on all

n available (large and small) cores. The performance of the

ACCMP is thus:

()

()

1

1
Perf Perf .

1
1 1

ACCMP
a

n

β

λ λ
β

−

=
⎛ ⎞−
+ + −⎜ ⎟⎜ ⎟

⎝ ⎠

 (8)

The performance of ACCMP can also be expressed as a

function of total chip power by using

()1 .P a nγ β= − + (9)

Fig. 2 shows the performance versus power of an ACCMP

compared with SCMPs for λ=0.75. Power and performance

increase in Fig. 2 as additional cores are added to the system.

However, performance saturates when the core count is high

due to Amdahl’s law. The shown ACCMP achieves higher

performance than the symmetric upper bound given by (7) at a

certain power envelope.

 Symmetric CMP Performance Vs. Power

Symmetric Upper

Bound

a=1, β=4 a =4

a =1

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30 35 40 45

Relative Power

R
el

a
ti

v
e

P
er

fo
rm

a
n

ce

Symmetric Upper Bound

Asymmetric (a=1, β=4)

Symmetric (a=4)

Symmetric (a=1)

Fig. 2. The performance versus power for SCMP and ACCMP for λ=0.75,

with no interaction overheads. Each data point represents a multiprocessor

with a different number of cores. The graph shows an ACCMP that crosses

the upper bound of symmetric multiprocessors at a certain power envelope.

D. Overhead Model for Symmetric CMP and ACCMP

The interactions between multiple parallel processors incur

performance overheads. These overheads are a result of

synchronization, communication and coherence costs, and are

modeled as a time penalty [6],

, .SCMP serial parallel SCMP overheadT T T T= + + (10)

In the general case, interaction overheads are a function of

the number of processors in the system [6],

()2

, 1 2 3 .SCMP overheadT k k n k n∝ + + +⋅⋅⋅ (11)

For our analysis, we assume that all coefficients except k1

and k2 are zero. The coefficient k1 could account for the effects

of manipulations to shared locks that are proportional to the

problem size. The coefficient k2 could account for the effects

of shared lock manipulations required for workload

distribution among the n available processors. The coefficients

are measured in interactions per instruction.

The time required to complete an interaction between two

processors depends on the distance information needs to travel

on the die. We assume that this distance is roughly

proportional to na , which is the diameter of the die.

Therefore, the latency is proportional to 1
v na
− , where v is

the effective signal propagation velocity. The time penalty due

to the interaction overheads for SCMP is thus:

IEEE Computer Architecture Letters Vol. 5, 2006

() 1

, 1 2 .SCMP overheadT M k nk v naλ
−

= + (12)

Therefore, the performance of SCMPs is

()

() ()
SCMP 1

1 2

Perf
Perf .

1

a

a k nk v na
n

λ λ η λ −

=

+ − + +

 (13)

For mathematical simplicity only, we assume k2→0 when

finding the performance upper bound of SCMPs. This results

in a higher upper bound:

() ()()
()

SCMP,max 1

1

1
Perf Perf .

2 1
opt

opt opt opt

P a P
a k v a nλ η λ −

=

− +

 (14)

When only one core is used, there is no performance loss

due to interaction overheads. The performance of one core is

given by substituting (4) into (3) where n=1,

Perf .
uniprocessor

P
η

γ
=

 (15)

The upper bound for symmetric systems is the maximum

between equations (14) and (15). Uniprocessors (15) achieve

more performance for a given power budget than

multiprocessors (14) when nopt<1 (i.e. λ<½) or when P is

sufficiently large:

()

1

1 2 1
1, .

2
P v

k

λ λ
γ λ

λη

− −
≥ ≥

 (16)

Fig. 3 shows the performance versus power with interaction

overheads for λ=0.75. When the core count is high,

performance degrades due to the interaction overheads. The

SCMPs are plotted with k2≠0, and do not cross the theoretical

upper bound given by equations (14)-(16).

 Symmetric CMP Performance Vs. Power

Symmetric Upper

Bound a =8

a =4

a =2

a =1

1

2

3

4

5

0 5 10 15 20 25

Relative Power

R
el

a
ti

v
e

P
er

fo
rm

a
n

ce

Symmetric Upper Bound
Symmetric (a=8)
Symmetric (a=4)
Symmetric (a=2)
Symmetric (a=1)

Fig. 3. The performance versus power for SCMPs for λ=0.75, k1=10-2,

k2=10-3, γ=1, η=1, v=1. Four SCMPs are modeled, with normalized core areas

of 1, 2, 4, and 8 respectively.

The interaction overhead for ACCMP is given by

() ()1

, 1 2T 1 .
ACCMP overhead

M k nk v n aλ β−

= + − + (17)

The performance of ACCMP is thus

()

() () ()

1

1

1 2

Perf
Perf .

1
1 1 1

ACCMP

a

n
a k nk v n a

β

λ λ η β λ β
β

−

−

=
⎛ ⎞−

+ + − + + − +⎜ ⎟⎜ ⎟
⎝ ⎠

 (18)

Performance versus power predictions for λ=0.75 is shown

in Fig. 4. The curves show two asymmetric structures modeled

according to (18), as well as the upper bound for SCMPs

given by equations (14)-(16). As can be seen, the ACCMPs

exceed the performance versus power achieved by SCMPs at

certain ranges of power. This is because ACCMPs optimize

the parallel phases and serial phases separately, whereas

SCMPs optimize both kinds of phases together.

ACCMP Performance Vs. Power

Symmetric Upper

Bound

a =1, β =4

a =0.33, β =6

1

2

3

4

5

0 5 10 15 20 25

Relative Power

R
el

a
ti

v
e

P
er

fo
rm

a
n

ce

Symmetric Upper Bound

Asymmetric (a=1, β=4)

Asymmetric (a=0.33, β=6)

Fig. 4. The performance versus power for SCMP upper bound (with λ=0.75,

k1=10-2, k2=0, γ=1, η=1, v=1) and ACCMP (with k2=10-3). The graph shows

two cases where an ACCMP crosses the upper bound of SCMPs.

III. EMULATION ENVIRONMENT

We validate our theory by emulations. The emulations were

done using one node of 16 Power3 microprocessors of a 162

processor IBM RS-6000-SP [4]. Different core sizes

(performance) are modeled with the help of a “leech” program

that executes in the background and degrades specific

microprocessor performance. For example, in order to model

80% of the Power3 processor, the leech process would have to

consume 20% of the CPU cycles. By using different

parameters for the leech program, processors of different

performance can be emulated. Software threads are bound to

specific processors with the help of operating system calls.

A. Synthetic Benchmark

In order to test the emulation environment we have

developed a synthetic benchmark using OpenMP, with λ=0.75.

The synthetic benchmark contains simple computation loops

with accesses to shared locks. The loop iterations in the

parallel regions were distributed dynamically among the

processors in chunks of 64 iterations, on a first come first

serve basis. Measurements of the emulation environment show

accuracy within 5% of the target core performance.

B. SPEC OMP Benchmarks

Apart from our synthetic benchmark, we have run a number

of SPEC OMP [3] benchmarks on our emulator. Unless

specified otherwise, OpenMP compilers divide parallel work

evenly among available processors. When the same amount of

work is distributed between a fast core and a slow core, the net

performance is reduced to that of two slow cores. Dynamic

loop scheduling with a small “chunk” size (i.e. iterations)

solves this problem since the maximum join waiting time will

be the time required to execute “chunk” iterations by the

slowest processor. The SPEC OMP benchmark sources were

thus augmented to include dynamic workload distribution.

These changes increase the runtime of the benchmarks since

now k2 is larger. Additionally, processor binding code was

added at the beginning of each benchmark.

IEEE Computer Architecture Letters Vol. 5, 2006

IV. EMULATION RESULTS

The emulation results for the synthetic benchmark are

shown in Fig. 5. For certain power regions, the three emulated

ACCMPs demonstrate better performance versus power than

any SCMP emulated, in accordance with the theoretical

equations and initial intuition. Table 1 shows a comparison of

the interesting SCMP and ACCMP configurations in Fig. 5.

Synthetic Benchmark Performance Vs. Power

A1

a =0.04, β =100 A2a =1, β =4

a =1.78, β =0.44

S3

S2
Measured

Symmetric Upper

Bound

S1
S4

1

2

3

4

5

6

0 5 10 15 20 25 30
Relative Power

R
el

a
ti

v
e

P
er

fo
r
m

a
n

ce

Asymmetric (a=0.04, β=100)

Asymmetric (a=1, β=4)

Asymmetric (a=1.78, β=2.25)

Measured Symmetric Upper Bound

Fig. 5. Synthetic benchmark performance versus power (λ=0.75). Various

symmetric configurations were emulated in order to plot the symmetric upper

bound. The asymmetric multiprocessors cross this boundary.

 The results for the SPEC OMP Wupwise benchmark with

the “test” input set are shown in Fig. 6. Extrapolation from the

emulation results reveal that λWupwise,test=0.71, k1=4.7*10
-3

,

k2=1.2*10
-3

. In the shown power range, the ACCMPs surpass

the performance of every SCMP emulated.

TABLE 1 – COMPARISON OF DESIGN POINTS.

ACCMP Symmetric CMP Comparison

Pt. a α # Cores Pt. a # Cores Perf. Pow.

A1 0.04 100 15 S1 4.96 3 +3% -69%

A1 0.04 100 15 S2 1.78 3 +71% -14%

A2 1 4 13 S3 4.96 5 -1% -35%

A2 1 4 13 S4 4 4 +20% 0%

A3 1 4 7 S5 4 4 +2% -31%

The Wupwise benchmark with the “train” input set required

over an hour to complete on a single Power3 processor. Since

this benchmark is highly parallel (λ=0.95 extrapolated), we

have not seen significant benefits from using ACCMP over

SCMPs. This is because the time required to execute the serial

phases is negligible compared with the total execution time.

310.wupwise_m Test Input Results

a =0.25, β =16
a =1, β =4

A3
S5

Measured Symmetric

Upper Bound

1

2

3

4

0 2 4 6 8 10 12 14 16

Relative Power

R
el

a
ti

v
e

P
er

fo
rm

a
n

ce

Asymmetric (a=0.26, β=15.31)

Asymmetric (a=1, β=4)

Measured Symmetric Upper Bound

Fig. 6. Wupwise performance versus power with the “test” inputs (λ=0.71

extrapolated). Various symmetric configurations were emulated in order to

plot the symmetric upper bound. The ACCMPs cross this boundary.

Most SPEC OMP benchmarks exhibited degradation when

small cores were added next to large cores. The reasons for

this stem from the fact that these benchmarks were written for

symmetric systems. For example, the Galgel benchmark

frequently calls the MATMUL function, which is a matrix

multiplication function. This function was written for

symmetric systems, so when small cores are introduced beside

larger cores, performance degrades to the level of the small

cores. Therefore, in order to fully realize the theoretical

benefits of ACCMP, asymmetry aware performance tuning

must be applied, which is a fertile area for future research.

V. DISCUSSION

We have shown by theoretical analysis that at certain power

ranges, ACCMPs can achieve higher performance for

multithreaded applications than any SCMP configuration. Our

emulations of ACCMP structures show reduction of more than

two thirds in power for similar performance, as well as more

than 70% higher performance for the same power budget, in

accordance with the theory and the initial intuition. ACCMPs

excel in executing multithreaded programs in power

constrained environments since the parallel and serial phases

of software applications are executed on different core types.

Placing multiple asymmetric cores on a single die

introduces many new challenges on the practical side.

Scheduling in operating systems becomes more complex when

processing cores are not homogeneous. Compilers must

support asymmetric load balancing for parallel constructs.

Additionally, ACCMP architectures must enable fast thread

migration between cores, efficient inter-core communications

and a scalable coherent memory system. The effects of finite

and varying parallelism of software applications on ACCMP

performance is left for future work.

REFERENCES

[1] G. Amdahl. “Validity of the single processor approach to achieving

large scale computing capability.” In Proc. AFIPS Spring Joint

Computer Conf., 1967, pp. 483-485.

[2] M. Annavaram, E. Grochowski, and J. Shen. “Mitigating Amdahl’s Law

Through EPI Throttling.” In proc of the 35th ISCA, June 2005.

[3] V. Aslot et. al. “SPEComp: A New Benchmark Suite for Measuring

Parallel Computer Performance.” In Proc. of WOMPAT 2001.

[4] M. R. Barrios et al. “The RS/6000 SP Inside Out.” IBM, International

Technical Support Organization, May 1999.

[5] S. Borkar. “Getting Gigascale Chips: Challenges and Opportunities in

Continuing Moore's Law." In ACM Queue vol. 1, no. 7 - October 2003.

[6] H. P. Flatt. “Performance of Parallel Processors.” In Parallel Computing,

Vol. 12, No. 1, 1989, pp. 1-20.

[7] E. Grochowski, R. Ronen, J. Shen, and H. Wang. “Best of Both Latency

and Throughput.” In proc. of the 22nd ICCD, October 2004.

[8] L. Hammond, B. A. Nayfeh, and K. Olukotun. “A Single-Chip

Multiprocessor.” In IEEE Computer, September 1997 (Vol. 30 No. 9).

[9] R. Kumar, D. Tullsen, P. Ranganathan, N. Jouppi, and K. Farkas.

"Single-ISA Heterogeneous Multi-core Architectures for Multithreaded

Workload Performance." In proc. of the 31st ISCA, June 2004.

[10] D. Menasce and V. Almeida. “Cost-performance analysis of

heterogeneity in supercomputer architectures.” In Proc. of ICS, 1990.

[11] D. Moncrieff, R. E. Overill, and S. Wilson. “Heterogeneous Computing

Machines and Amdahl's Law.” In Parallel Computing, vol. 22, 1996.

[12] F. Pollack. "New Microarchitecture Challenges in the Coming

Generations of CMOS Process Technologies." In Micro 32, 1999.

http://www.intel.com/research/mrl/Library/micro32Keynote.pdf

IEEE Computer Architecture Letters Vol. 5, 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

