
Abstract—This paper evaluates asymmetric cluster chip 

multiprocessor (ACCMP) architectures as a mechanism to 

achieve the highest performance for a given power budget. 

ACCMPs execute serial phases of multithreaded programs on 

large high-performance cores whereas parallel phases are 

executed on a mix of large and many small simple cores. 

Theoretical analysis reveals a performance upper bound for 

symmetric multiprocessors, which is surpassed by asymmetric 

configurations at certain power ranges. Our emulations show that 

asymmetric multiprocessors can reduce power consumption by 

more than two thirds with similar performance compared to 

symmetric multiprocessors. 

Index Terms—ACCMP, Chip Multiprocessors, Power Efficiency. 

I. INTRODUCTION 

Achieving high performance within a given power envelope 

is a major concern for microprocessor architects. In the past, 

the constant decrease in feature sizes has enabled to increase 

uniprocessor performance by packing more transistors in the 

same die area. Nowadays, due to the complexity of current 

state of the art microprocessors, a large increase in power and 

area results in only small performance improvements. 

Empirical evidence suggests that the performance of

uniprocessors is proportional to the square root of their area 

 [12], [5]. These trends favor the use of Chip Multi Processors 

(CMP)  [8].  

Software applications contain serial phases as well as 

parallel phases. The lowest execution time for the serial phases 

is achieved by the highest performance uniprocessor available, 

since the serial phases can be executed on one processor only. 

On the other hand, parallel phases can be executed on 

numerous processors in parallel. Therefore, the lowest 

execution time for the parallel phases is achieved by executing 

them on many simple processors that consume less energy per 

instruction (EPI)  [7]. We claim that a choice of symmetric 

cores is suboptimal due to the contradicting requirements of 

the serial and parallel phases within the same application. 

We propose placing clusters of different cores on a single 

die. All of the cores within the Asymmetric Cluster Chip 
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Multi-Processor (ACCMP) share the same instruction set 

architecture and memory address space in order to let threads 

migrate from core to core. The larger and faster cores will 

execute single-threaded programs and the serial phases of 

multithreaded programs for high EPI, whereas the smaller and 

slower cores will execute the parallel phases for lower EPI. In 

the general case, ACCMPs will include clusters of different 

cores, since numerous multithreaded applications with varying 

parallelism execute in parallel. An example of an ACCMP 

with three clusters is shown in Fig. 1. 
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Fig. 1. An ACCMP floorplan with 22 general-purpose cores. On the left is a 

cluster of large high performance cores that consume high EPI. On the right 

are two clusters of smaller cores that consume less EPI.  

Placing heterogeneous cores on a single die has been 

proposed in recent research. Kumar et al.  [9] have shown how 

a heterogeneous multiprocessor could achieve similar 

performance to a homogeneous multiprocessor for less power 

and area. Grochowski et al.  [2],  [7] have proposed and 

demonstrated an asymmetric multiprocessor by employing 

voltage and frequency scaling on a symmetric multiprocessor. 

Menasce et al.  [10] have shown the analytic benefit of 

heterogeneous systems using queuing models. Moncrieff et al. 

 [11] have shown that heterogeneous multiprocessors perform 

better when parallelism varies during execution.  

Our contributions to previous work are as follows. We 

propose a simple theoretical model for the performance of 

symmetric chip multiprocessors. We then find an upper bound 

for the performance per unit power (power efficiency) of such 

multiprocessors. By comparing this upper bound to the power 

efficiency of asymmetric chip multiprocessors we conclude 

that asymmetric structures can achieve higher power efficiency 

than any symmetric chip multiprocessor. Finally, we validate 

our findings by experimental emulation of ACCMP structures. 

II. ANALYSIS

A. Symmetric Chip Multiprocessors (SCMP) 

Software applications have two types of phases, serial 

phases and parallel phases. The serial phases can be executed 
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only on a single processor whereas the parallel phases can be 

executed on more than one processor. The variable λ denotes 

the fraction of dynamic instructions that reside in the parallel 

phases out of the total dynamic instructions. 

For the purpose of mathematical analysis, we evaluate 

multithreaded applications whose parallel phases can be 

executed by up to the number of available hardware 

processors, denoted by n. We assume that the performance of 

a uniprocessor is a function of its area  [12],  [5]. Therefore, a 

processor with area size a will have performance of Perf(a), 

measured in instructions per second. We assume constant 

cycles per instruction per processor throughout the workload. 

The number of dynamic instructions in the parallel phases 

of a program with M total dynamic instructions is λM. When 

interactions between cores are neglected, Amdahl’s law for 

symmetric parallel processors  [1] may be written as following: 
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The performance of an SCMP can thus be expressed as
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We estimate Perf(a) for a uniprocessor of size a by 

incorporating Pollack’s rule  [12],  [5] which states that 

performance grows with the square root of area, that is 

( )Perf ,a aη=  (3) 

where η  is a constant. For simplicity, we assume that total 

chip power is proportional to the area of the die  [12], 

.P naγ=  (4) 

SCMP performance (2) can also be expressed as a function 

of total chip power and area of a single core by using (3)-(4), 

( ) ( )
( )

SCMP

1
Perf , Perf .

1

P a a
a

P

γ
λ λ

=
⎛ ⎞

+ −⎜ ⎟
⎝ ⎠

 (5) 

B. Performance Upper Bound of Symmetric CMP 

For a given power budget, the highest performance 
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The above results imply that maximum performance for 

symmetric multiprocessors is achieved when the execution 

time of the parallel and serial phases are equal. The maximum 

performance as a function of total SCMP power is thus: 
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C. Asymmetric Cluster Chip Multi-Processors (ACCMP)  

We focus on a special case of ACCMP that contains one 

large core of area βa and n-1 small cores of area a, where β>1. 

We assume that the serial phases of programs are executed on 

the large core, whereas the parallel phases are executed on all 

n available (large and small) cores. The performance of the 

ACCMP is thus: 
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The performance of ACCMP can also be expressed as a

function of total chip power by using 

( )1 .P a nγ β= − +  (9) 

Fig. 2 shows the performance versus power of an ACCMP 

compared with SCMPs for λ=0.75. Power and performance 

increase in Fig. 2 as additional cores are added to the system. 

However, performance saturates when the core count is high 

due to Amdahl’s law. The shown ACCMP achieves higher 

performance than the symmetric upper bound given by (7) at a 

certain power envelope. 
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Fig. 2. The performance versus power for SCMP and ACCMP for λ=0.75, 

with no interaction overheads. Each data point represents a multiprocessor 

with a different number of cores. The graph shows an ACCMP that crosses 

the upper bound of symmetric multiprocessors at a certain power envelope. 

D. Overhead Model for Symmetric CMP and ACCMP  

The interactions between multiple parallel processors incur 

performance overheads. These overheads are a result of 

synchronization, communication and coherence costs, and are 

modeled as a time penalty  [6], 

, .SCMP serial parallel SCMP overheadT T T T= + +  (10) 

In the general case, interaction overheads are a function of 

the number of processors in the system  [6], 

( )2

, 1 2 3 .SCMP overheadT k k n k n∝ + + +⋅⋅⋅  (11) 

For our analysis, we assume that all coefficients except k1

and k2 are zero. The coefficient k1 could account for the effects 

of manipulations to shared locks that are proportional to the 

problem size. The coefficient k2 could account for the effects 

of shared lock manipulations required for workload 

distribution among the n available processors. The coefficients 

are measured in interactions per instruction. 

The time required to complete an interaction between two 

processors depends on the distance information needs to travel 

on the die. We assume that this distance is roughly

proportional to na , which is the diameter of the die. 

Therefore, the latency is proportional to 1
v na
− , where v is 

the effective signal propagation velocity. The time penalty due 

to the interaction overheads for SCMP is thus: 
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Therefore, the performance of SCMPs is 
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For mathematical simplicity only, we assume k2→0 when 

finding the performance upper bound of SCMPs. This results 

in a higher upper bound: 
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When only one core is used, there is no performance loss 

due to interaction overheads. The performance of one core is 

given by substituting (4) into (3) where n=1, 

Perf .
uniprocessor

P
η

γ
=

 (15) 

The upper bound for symmetric systems is the maximum 

between equations (14) and (15). Uniprocessors (15) achieve 

more performance for a given power budget than 

multiprocessors (14) when nopt<1 (i.e. λ<½) or when P is 

sufficiently large: 
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Fig. 3 shows the performance versus power with interaction 

overheads for λ=0.75. When the core count is high, 

performance degrades due to the interaction overheads. The 

SCMPs are plotted with k2≠0, and do not cross the theoretical 

upper bound given by equations (14)-(16). 
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Fig. 3. The performance versus power for SCMPs for λ=0.75, k1=10-2,   

k2=10-3, γ=1, η=1, v=1. Four SCMPs are modeled, with normalized core areas 

of 1, 2, 4, and 8 respectively. 

The interaction overhead for ACCMP is given by 
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The performance of ACCMP is thus 
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Performance versus power predictions for λ=0.75 is shown 

in Fig. 4. The curves show two asymmetric structures modeled 

according to (18), as well as the upper bound for SCMPs 

given by equations (14)-(16). As can be seen, the ACCMPs 

exceed the performance versus power achieved by SCMPs at 

certain ranges of power. This is because ACCMPs optimize 

the parallel phases and serial phases separately, whereas 

SCMPs optimize both kinds of phases together.  
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Fig. 4. The performance versus power for SCMP upper bound (with λ=0.75, 

k1=10-2, k2=0, γ=1, η=1, v=1) and ACCMP (with k2=10-3). The graph shows 

two cases where an ACCMP crosses the upper bound of SCMPs. 

III. EMULATION ENVIRONMENT

We validate our theory by emulations. The emulations were 

done using one node of 16 Power3 microprocessors of a 162 

processor IBM RS-6000-SP  [4]. Different core sizes 

(performance) are modeled with the help of a “leech” program 

that executes in the background and degrades specific 

microprocessor performance. For example, in order to model 

80% of the Power3 processor, the leech process would have to 

consume 20% of the CPU cycles. By using different 

parameters for the leech program, processors of different 

performance can be emulated. Software threads are bound to 

specific processors with the help of operating system calls. 

A. Synthetic Benchmark 

In order to test the emulation environment we have 

developed a synthetic benchmark using OpenMP, with λ=0.75. 

The synthetic benchmark contains simple computation loops 

with accesses to shared locks. The loop iterations in the 

parallel regions were distributed dynamically among the 

processors in chunks of 64 iterations, on a first come first 

serve basis. Measurements of the emulation environment show 

accuracy within 5% of the target core performance. 

B. SPEC OMP Benchmarks 

Apart from our synthetic benchmark, we have run a number 

of SPEC OMP  [3] benchmarks on our emulator. Unless 

specified otherwise, OpenMP compilers divide parallel work 

evenly among available processors. When the same amount of 

work is distributed between a fast core and a slow core, the net 

performance is reduced to that of two slow cores. Dynamic 

loop scheduling with a small “chunk” size (i.e. iterations) 

solves this problem since the maximum join waiting time will 

be the time required to execute “chunk” iterations by the 

slowest processor. The SPEC OMP benchmark sources were 

thus augmented to include dynamic workload distribution. 

These changes increase the runtime of the benchmarks since 

now k2 is larger. Additionally, processor binding code was 

added at the beginning of each benchmark. 

IEEE Computer Architecture Letters Vol. 5, 2006



IV. EMULATION RESULTS

The emulation results for the synthetic benchmark are 

shown in Fig. 5. For certain power regions, the three emulated 

ACCMPs demonstrate better performance versus power than 

any SCMP emulated, in accordance with the theoretical 

equations and initial intuition. Table 1 shows a comparison of 

the interesting SCMP and ACCMP configurations in Fig. 5. 
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Fig. 5. Synthetic benchmark performance versus power (λ=0.75). Various 

symmetric configurations were emulated in order to plot the symmetric upper 

bound. The asymmetric multiprocessors cross this boundary.  

 The results for the SPEC OMP Wupwise benchmark with 

the “test” input set are shown in Fig. 6. Extrapolation from the 

emulation results reveal that λWupwise,test=0.71, k1=4.7*10
-3

, 

k2=1.2*10
-3

. In the shown power range, the ACCMPs surpass 

the performance of every SCMP emulated. 

TABLE 1 – COMPARISON OF DESIGN POINTS. 

ACCMP Symmetric CMP Comparison

Pt. a α # Cores Pt. a # Cores Perf. Pow. 

A1 0.04 100 15 S1 4.96 3 +3% -69%

A1 0.04 100 15 S2 1.78 3 +71% -14%

A2 1 4 13 S3 4.96 5 -1% -35%

A2 1 4 13 S4 4 4 +20% 0%

A3 1 4 7 S5 4 4 +2% -31%

The Wupwise benchmark with the “train” input set required 

over an hour to complete on a single Power3 processor. Since 

this benchmark is highly parallel (λ=0.95 extrapolated), we 

have not seen significant benefits from using ACCMP over 

SCMPs. This is because the time required to execute the serial 

phases is negligible compared with the total execution time.  
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Fig. 6. Wupwise performance versus power with the “test” inputs (λ=0.71 

extrapolated). Various symmetric configurations were emulated in order to 

plot the symmetric upper bound. The ACCMPs cross this boundary.  

Most SPEC OMP benchmarks exhibited degradation when

small cores were added next to large cores. The reasons for 

this stem from the fact that these benchmarks were written for 

symmetric systems. For example, the Galgel benchmark 

frequently calls the MATMUL function, which is a matrix 

multiplication function. This function was written for 

symmetric systems, so when small cores are introduced beside 

larger cores, performance degrades to the level of the small 

cores. Therefore, in order to fully realize the theoretical 

benefits of ACCMP, asymmetry aware performance tuning 

must be applied, which is a fertile area for future research. 

V. DISCUSSION

We have shown by theoretical analysis that at certain power 

ranges, ACCMPs can achieve higher performance for 

multithreaded applications than any SCMP configuration. Our 

emulations of ACCMP structures show reduction of more than 

two thirds in power for similar performance, as well as more 

than 70% higher performance for the same power budget, in 

accordance with the theory and the initial intuition. ACCMPs 

excel in executing multithreaded programs in power 

constrained environments since the parallel and serial phases 

of software applications are executed on different core types.  

Placing multiple asymmetric cores on a single die 

introduces many new challenges on the practical side. 

Scheduling in operating systems becomes more complex when 

processing cores are not homogeneous. Compilers must 

support asymmetric load balancing for parallel constructs. 

Additionally, ACCMP architectures must enable fast thread 

migration between cores, efficient inter-core communications 

and a scalable coherent memory system. The effects of finite 

and varying parallelism of software applications on ACCMP 

performance is left for future work.  
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